\(\int (a+b \sec (c+d x))^{3/2} (B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [824]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 34, antiderivative size = 312 \[ \int (a+b \sec (c+d x))^{3/2} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=-\frac {2 (a-b) \sqrt {a+b} \left (20 a b B+3 a^2 C+9 b^2 C\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^2 d}+\frac {2 (a-b) \sqrt {a+b} (15 a B-5 b B-3 a C+9 b C) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b d}+\frac {2 (5 b B+3 a C) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 C (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d} \]

[Out]

-2/15*(a-b)*(20*B*a*b+3*C*a^2+9*C*b^2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(
1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^2/d+2/15*(a-b)*(15*B*a-5*B*
b-3*C*a+9*C*b)*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-
sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b/d+2/5*C*(a+b*sec(d*x+c))^(3/2)*tan(d*x+c)/d+2/15*(5
*B*b+3*C*a)*(a+b*sec(d*x+c))^(1/2)*tan(d*x+c)/d

Rubi [A] (verified)

Time = 0.54 (sec) , antiderivative size = 312, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.147, Rules used = {4141, 4143, 12, 3917, 4089} \[ \int (a+b \sec (c+d x))^{3/2} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=-\frac {2 (a-b) \sqrt {a+b} \left (3 a^2 C+20 a b B+9 b^2 C\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{15 b^2 d}+\frac {2 (a-b) \sqrt {a+b} (15 a B-3 a C-5 b B+9 b C) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{15 b d}+\frac {2 (3 a C+5 b B) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{15 d}+\frac {2 C \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{5 d} \]

[In]

Int[(a + b*Sec[c + d*x])^(3/2)*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(-2*(a - b)*Sqrt[a + b]*(20*a*b*B + 3*a^2*C + 9*b^2*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/
Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(
15*b^2*d) + (2*(a - b)*Sqrt[a + b]*(15*a*B - 5*b*B - 3*a*C + 9*b*C)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*S
ec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))
/(a - b))])/(15*b*d) + (2*(5*b*B + 3*a*C)*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(15*d) + (2*C*(a + b*Sec[c +
d*x])^(3/2)*Tan[c + d*x])/(5*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4141

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) +
 (a_))^(m_.), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[1/(m + 1), I
nt[(a + b*Csc[e + f*x])^(m - 1)*Simp[a*A*(m + 1) + ((A*b + a*B)*(m + 1) + b*C*m)*Csc[e + f*x] + (b*B*(m + 1) +
 a*C*m)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && IGtQ[2*m, 0]

Rule 4143

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_
.) + (a_)], x_Symbol] :> Int[(A + (B - C)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Dist[C, Int[Csc[e + f*x
]*((1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0
]

Rubi steps \begin{align*} \text {integral}& = \frac {2 C (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d}+\frac {2}{5} \int \sqrt {a+b \sec (c+d x)} \left (\frac {1}{2} (5 a B+3 b C) \sec (c+d x)+\frac {1}{2} (5 b B+3 a C) \sec ^2(c+d x)\right ) \, dx \\ & = \frac {2 (5 b B+3 a C) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 C (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d}+\frac {4}{15} \int \frac {\frac {1}{4} \left (15 a^2 B+5 b^2 B+12 a b C\right ) \sec (c+d x)+\frac {1}{4} \left (20 a b B+3 a^2 C+9 b^2 C\right ) \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {2 (5 b B+3 a C) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 C (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d}+\frac {4}{15} \int \frac {\left (\frac {1}{4} \left (15 a^2 B+5 b^2 B+12 a b C\right )+\frac {1}{4} \left (-20 a b B-3 a^2 C-9 b^2 C\right )\right ) \sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx+\frac {1}{15} \left (20 a b B+3 a^2 C+9 b^2 C\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = -\frac {2 (a-b) \sqrt {a+b} \left (20 a b B+3 a^2 C+9 b^2 C\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^2 d}+\frac {2 (5 b B+3 a C) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 C (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d}+\frac {1}{15} ((a-b) (15 a B-5 b B-3 a C+9 b C)) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = -\frac {2 (a-b) \sqrt {a+b} \left (20 a b B+3 a^2 C+9 b^2 C\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^2 d}+\frac {2 (a-b) \sqrt {a+b} (15 a B-5 b B-3 a C+9 b C) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b d}+\frac {2 (5 b B+3 a C) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 d}+\frac {2 C (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d} \\ \end{align*}

Mathematica [A] (warning: unable to verify)

Time = 17.75 (sec) , antiderivative size = 456, normalized size of antiderivative = 1.46 \[ \int (a+b \sec (c+d x))^{3/2} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=-\frac {2 \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} (a+b \sec (c+d x))^{3/2} \left (2 (a+b) \left (20 a b B+3 a^2 C+9 b^2 C\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )-2 b (a+b) (3 a (5 B+C)+b (5 B+9 C)) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )+\left (20 a b B+3 a^2 C+9 b^2 C\right ) \cos (c+d x) (b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{15 b d (b+a \cos (c+d x))^2 \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )} \sec ^{\frac {3}{2}}(c+d x)}+\frac {\cos (c+d x) (a+b \sec (c+d x))^{3/2} \left (\frac {2 \left (20 a b B+3 a^2 C+9 b^2 C\right ) \sin (c+d x)}{15 b}+\frac {2}{15} \sec (c+d x) (5 b B \sin (c+d x)+6 a C \sin (c+d x))+\frac {2}{5} b C \sec (c+d x) \tan (c+d x)\right )}{d (b+a \cos (c+d x))} \]

[In]

Integrate[(a + b*Sec[c + d*x])^(3/2)*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(-2*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(a + b*Sec[c + d*x])^(3/2)*(2*(a + b)*(20*a*b*B + 3*a^2*C + 9*b^2*C)
*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSi
n[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2*b*(a + b)*(3*a*(5*B + C) + b*(5*B + 9*C))*Sqrt[Cos[c + d*x]/(1 + Cos
[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b
)/(a + b)] + (20*a*b*B + 3*a^2*C + 9*b^2*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)
/2]))/(15*b*d*(b + a*Cos[c + d*x])^2*Sqrt[Sec[(c + d*x)/2]^2]*Sec[c + d*x]^(3/2)) + (Cos[c + d*x]*(a + b*Sec[c
 + d*x])^(3/2)*((2*(20*a*b*B + 3*a^2*C + 9*b^2*C)*Sin[c + d*x])/(15*b) + (2*Sec[c + d*x]*(5*b*B*Sin[c + d*x] +
 6*a*C*Sin[c + d*x]))/15 + (2*b*C*Sec[c + d*x]*Tan[c + d*x])/5))/(d*(b + a*Cos[c + d*x]))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(3365\) vs. \(2(282)=564\).

Time = 20.71 (sec) , antiderivative size = 3366, normalized size of antiderivative = 10.79

method result size
parts \(\text {Expression too large to display}\) \(3366\)
default \(\text {Expression too large to display}\) \(3400\)

[In]

int((a+b*sec(d*x+c))^(3/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

-2/3*B/d*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/(cos(d*x+c)+1)*(3*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*
(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2*cos(d*x+c)^2+4
*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+
c))/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)^2+EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(c
os(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^2*cos(d*x+c)^2-4*EllipticE(cot(d*x+c)-cs
c(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2
)*a^2*cos(d*x+c)^2-4*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1
/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)^2+6*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b
+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2*cos(d*x+c)+8*Ell
ipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/
(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)+2*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d
*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^2*cos(d*x+c)-8*EllipticE(cot(d*x+c)-csc(d*x+
c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*
cos(d*x+c)-8*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(
b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)+3*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x
+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2+4*(cos(d*x+c)/(cos(d*x+c)+
1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))
*a*b+(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-cs
c(d*x+c),((a-b)/(a+b))^(1/2))*b^2-4*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1)
)^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2-4*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*
(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b-4*cos(d*x+c)*s
in(d*x+c)*a^2-cos(d*x+c)*sin(d*x+c)*a*b-5*sin(d*x+c)*a*b-b^2*sin(d*x+c)-b^2*tan(d*x+c))-2/5*C/d/b*(a+b*sec(d*x
+c))^(1/2)/(b+a*cos(d*x+c))/(cos(d*x+c)+1)*(-3*a*b^2*tan(d*x+c)-3*sin(d*x+c)*cos(d*x+c)*a*b^2-2*EllipticE(cot(
d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)
+1))^(1/2)*a^2*b*cos(d*x+c)-3*sin(d*x+c)*b^3-3*a*b^2*sin(d*x+c)-b^3*tan(d*x+c)-2*a^2*b*cos(d*x+c)*sin(d*x+c)+3
*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*
x+c),((a-b)/(a+b))^(1/2))*b^3-(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2
)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^3-3*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(
cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^3-6*EllipticE(cot(d*x+
c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))
^(1/2)*a*b^2*cos(d*x+c)+2*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(
d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)+8*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(
a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c
)-EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*
x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)^2-3*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*
(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)^2+EllipticF(cot(d*x+
c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))
^(1/2)*a^2*b*cos(d*x+c)^2+4*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(co
s(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)^2-(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+
1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b-3*(1/(a
+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(
(a-b)/(a+b))^(1/2))*a*b^2-EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(
d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)^2-3*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(
a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)^
2+3*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(
d*x+c)/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)^2+(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos
(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b+4*(1/(a+b)*(b+a*cos(d*x+c))/(cos(
d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2-
2*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*
x+c)/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)-6*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a
*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)+6*EllipticF(cot(d*x+c)-csc
(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)
*b^3*cos(d*x+c)-a^3*cos(d*x+c)*sin(d*x+c)-3*a^2*b*sin(d*x+c)-b^3*sec(d*x+c)*tan(d*x+c))

Fricas [F]

\[ \int (a+b \sec (c+d x))^{3/2} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(3/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

integral((C*b*sec(d*x + c)^3 + B*a*sec(d*x + c) + (C*a + B*b)*sec(d*x + c)^2)*sqrt(b*sec(d*x + c) + a), x)

Sympy [F]

\[ \int (a+b \sec (c+d x))^{3/2} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int \left (B + C \sec {\left (c + d x \right )}\right ) \left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}} \sec {\left (c + d x \right )}\, dx \]

[In]

integrate((a+b*sec(d*x+c))**(3/2)*(B*sec(d*x+c)+C*sec(d*x+c)**2),x)

[Out]

Integral((B + C*sec(c + d*x))*(a + b*sec(c + d*x))**(3/2)*sec(c + d*x), x)

Maxima [F]

\[ \int (a+b \sec (c+d x))^{3/2} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(3/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*(b*sec(d*x + c) + a)^(3/2), x)

Giac [F]

\[ \int (a+b \sec (c+d x))^{3/2} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(3/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*(b*sec(d*x + c) + a)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int (a+b \sec (c+d x))^{3/2} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int \left (\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \]

[In]

int((B/cos(c + d*x) + C/cos(c + d*x)^2)*(a + b/cos(c + d*x))^(3/2),x)

[Out]

int((B/cos(c + d*x) + C/cos(c + d*x)^2)*(a + b/cos(c + d*x))^(3/2), x)